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DETERMINATION OF STRESS-STRAIN STATE OF SHELLS TAKEN
INTO ACCOUNT OF STRINGERS AND FRAMES

A methodology for engineering calculations of the strength of cylindrical shells presented, taking into account

a frame consisting of a set of stringers and frames. One of the ways to solve this type of problem is to use the
method of reduced structural rigidity, when the reinforced shell replaced by a solid one with a rigidity equivalent
to the original one. The use of shells of equivalent rigidity in calculation models is justified if it is necessary to
evaluate the stress-strain state of objects attached to the shell. The given characteristics of elasticity and rigidity
calculated in this work. Equations obtained that describe the stability of cylindrical shells taking into account
the frame of stringers and frames. The finite element method used to calculate cylindrical shells supported by
stringers and frames. The use of the finite element method makes it possible to calculate the stress-strain state
of a mechanical system, taking into account all design features, with full consideration of boundary conditions
and specified loads. As an example, the approximation of a tetrahedral finite element shown. The use of the finite
element method in solving problems of the strength of reinforced shells leads to a significant increase in the
number of finite elements. This leads to too high demands on computing technology in terms of memory capacity
and performance. Thus, it is advisable to develop economical and effective methods for calculating the stress-
strain state of complex mechanical systems that combine analytical and numerical methods that complement

each other and make it possible to evaluate the strength of structures at minimal cost.
Key words: stress-strain state, shell, stringers, frames, finite element method.

Formulation of the problem. The tail and
side engine compartments of rockets and aircraft
fuselages made in the form of frame cylindrical
shells. The frame in them is a longitudinal set of
stringers and a transverse set of frames. In practice,
three types of frames are widely used:

1. Stringers and frames having approximately
equal stiffness characteristics, evenly distributed in
the longitudinal and transverse directions.

2. Frames have more rigid characteristics than
stringers, and they are located much less frequently
than stringers.

3. The lightweight frame set of the first type
complemented by a set of sparsely spaced reinforced
frames and stringers.
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Taking into account the complex geometry of
structures, an urgent problem arises in constructing
an engineering methodology for calculating the
strength and stability of frame cylindrical shells,
widely used in aircraft construction.

Analysis of recent research and publications.
Methods for calculating mechanical systems for
stability make it possible quite successfully solve
problems for rod and shell structures [1]. The
widespread use of reinforced shells in aircraft
structures explained by the fact that, with the same
mass as smooth shells, they are able to withstand
higher levels of compressive stresses. However, the
analytical solution to this problem becomes more
complex [2]. When using analytical approaches to
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solve the problem under consideration, one has to
face the problem of summing infinite series [2].
Most numerical procedures are based on the finite
element solution method [3-7], which is more
universal, but requires a justified formation of a
finite element model in relation to the problem
being solved, therefore, with regard to labor costs,
it is important which finite element model is used
in the calculations. This work is devoted to the
development of analytical and numerical approaches
to solving problems of the strength of cylindrical
shells and is a development of works [1, 2, 7].

Task statement. The purpose of the article is
to determine the main resolving equations and an
algorithm for solving the problem of the strength
of frame cylindrical shells. There are not enough
studies that propose engineering methods for
assessing the strength and stability of cylindrical
shells taking into account stringers and frames,
which allow analytically solving this problem
quickly and efficiently in terms of labor costs.

Outline of the main material of the study. Let
us consider shells, the reinforcement set of which is
located along the lines of the main curvatures. Such
shells considered structurally orthotropic. Methods
for calculating such shells based on well-known
methods for calculating smooth shells. To do this, the
reinforced shell replaced by some equivalent smooth
shell with different rigidity characteristics along the
lines of the main curvatures. After this, the well-
developed apparatus of the theory of smooth shells
applied to the equivalent shell. In the future, we will
consider such shells, the supporting frame of which
formsaregularmesh. Letus considerthe determination
of elastic moduli for a cylindrical shell under the
action of tension-compression in the axial direction.
When a smooth shell compressed by force P,
force does work equal to A4 = Pal, where a/ —is the
shortening of the shell.

It is known, that
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Here E, — Young’s modulus, F — cross-sectional
area, R — shell radius, & — shell wall thickness,
I — shell length. Then the work is equal
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When compressed by the force of the reinforced
shell, it will be partially absorbed by the stringers and
partially by the skin. The total work of these forces is
equal to

A= nEAll + P2A12 )

taking into account that
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We have

A= [np'z + PZZ] /
EF - EF,
where n — is the number of stringers, F, — is the
cross-sectional area of the stringers, F, — is the
cross-sectional area of the shell, £, — is the Young’s
modulus of the stringer material, E, — is the Young’s
modulus of the shell material.
But also A4 = A, in addition,
aly =al, =al,
&R+Q—R
Taking this into account, we obtain an expression

for the reduced Young’s modulus E, of an equivalent
smooth shell:

2nR3E,
Similarly, we can obtain an expression for Young’s

modulus E, :
Q:&@+EE}
a,dF,

where E, —isthe Young’s modulus of the frame material,
F, —is the cross-sectional area of the frame, and a, —is
the length of the section between adjacent frames.

For bending rigidity characteristics, the following
relations are usually accepted [1, 2]
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where [, — is the moment of inertia of the cross-
sectional area of the stringer relative to its central
axis, parallel to the tangent to the shell circumference,
I,— is the moment of inertia of the cross-sectional
area of the frame relative to its central axis, parallel
to the generatrix of the shell, a,, a,— are the distances
between adjacent stringers and frames, respectively,
., n,— Poisson’s ratios. Usually p, =p, =p, for
shear and torsional rigidities, the expressions are taken:
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Taking into account the introduced notation, it is
possible to express the internal forces in a reinforced
shell in the form known in the theory of shells [1, 2]
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For the components of deformations and curvatures
we have the usual dependencies

au w _dw o ow
g v w L Tw W
Yoy RS o RY
. - ou Q, M o*w ’
ay ax oxoy
here u, v —tangential displacements, w — deflection,
R, R,— corresponding radii of curvature.

To obtain differential equations of equilibrium and
compatibility of deformations for reinforced shells,
the same methods are usually used as for smooth
shells. Thus, you can get:
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The above formulas use the same notation as in the
equations of V.Z. Vlasov for isotropic shells, where ¢ —
is a function of stress and ¢ — is the normal load [1, 2].

In stability problems, the normal load q consists of
projections of membrane forces arising in the middle
surface of the shell from a given external load and is
determined by the formula:

o 0w oW w0 0w
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In general terms, the procedure for solving the
problem of calculating shells for stability will be
reduced to the following. It is necessary to set an
expression for the deflection, which would describe
as fully as possible the nature of the expected wave
formation on the surface of the shell under a given
external load. From a geometrical point of view, the
expression for deflection should be the equation of the
contour of the dents and convexities that form on the
surface of the shell due to buckling. On the contour of
dents and bulges, the deflection should be zero. If part
of the dent contour coincides with the free edge of the
shell, then in this case w = 0, the transverse forces are
equal to zero:

q=-
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It should be emphasized that solving the stability
problem for reinforced shells with arbitrary boundary
conditions requires the use of numerical methods,
since a solution can be obtained analytically only for
those cases where the solution can be represented as
a Fourier series.

To solve a problem using the finite element method,
you first need to build a 3D model. An example of 3D
modeling is shown in Fig. 1.

Fig. 1. Frame modeling

Next, the standard FEM procedure is used for
calculations [3-6].

Separation of the structure into separate finite
elements is a very responsible stage of the calculation.
Both the accuracy of the -calculation and its
laboriousness depend on the correct division. Since
this operation has no theoretical basis, its effectiveness
depends entirely on the engineering skills of the person
engaged in it. Although the use of small elements
increases the accuracy of the calculation, it increases
the number of unknowns and the order of equations
for their determination. In this regard, it is necessary to
choose the dimensions of the elements in accordance
with the gradients of those values that are determined.
In places where the sought value changes quickly, the
sizes of the elements are reduced. To build a finite-
dimensional model, you can use three-dimensional
finite elements in the form of a tetrahedron, within
which a linear displacement field is specified:

uo=fi+ X+ Ly + iz,

u, = fi+ fix + Ly + fz,

u, = fo+ fox + fuy + finz,
where f...f,, — are arbitrary constants. By equating
the nodal points u,, u,, u, to the corresponding nodal

displacements, it is possible to express constants
in terms of nodal displacements v* and obtain a
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dependence in the form of u = +v*. Using the usual
procedure allows you to find the stiffness matrix of
such an element. In the three-dimensional case all
six deformation components are taken into account.

The expressions for the stresses inside each
element in the general view have the form

oM = Cimgtm Ggm)

In a structure consisting of different materials, each
element can have its own elasticity matrix.
Conclusions. The paper provides an analytical
description of the solution to the problem of stability
of cylindrical shells, taking into account stringers
and frames. Solving equations are obtained. It is
shown that numerical methods, in particular the

finite element method, should be used to solve the
problems of the stability of rigid cylindrical shells
with arbitrary boundary conditions.

where C — is the elasticity matrix of element m, and
oy —is the initial stress in the middle of the element.
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Herpux B.O., Tpyoaues C.I., Koaogexnmnii B.A. BUSHAYEHHS HAIIPYKEHO-
AE®OPMOBAHOI'O CTAHY OBOJIOHOK 3 YPAXYBAHHSIM CTPUHI'EPIB I IIITAHT'OYTIB

IIpeocmasneno mMemoouxy iH#CEHEPHO2O PO3PAXYHKY HA MIYHICb YUTTHOPUUHUX 0DOTOHOK 3 VPAXY6aH-
HSM KAPKACY, W0 CKAA0AEmMvcs 3 Habopy cmpuneepis i wnaneoymis. OOHuM i3 cnocobié po36 'sa3ants 0aHo20
MUuny 3a80aHb € BUKOPUCTAHHSL MEMOOY HABEOEHOT JCOPCMKOCMI KOHCMPYKYIL, KOIU NiOKpInieHa 00010HKA
3AMIHIOEMbCA CYYIILHOIO 3 HCOPCMKICMIO, eK8I8ALIEeHMHOI0 NOYamKO8il. Buxkopucmanusa exeisaienmuux 3d
AHCOPCMKICTNIO OOONIOHOK Y PO3PAXYHKOGUX MOOENSIX GUNPABOAHe, SAKWO HeOOXIOHO OYIHUMU HANPYHCEHO-
dehopmosanuti cman 00’ €xmis, NPUEOHAHUX 00 000NIOHKU. Y pobOmi po3paxosani HAGeOeHi XapaKkmepucmuKku
npysichocmi ma sicopcmrocmi. Ompumani pieHsAHHS, WO ONUCYIOMb CMIUKICMb YUIIHOPUYHUX O0OONIOHOK 3
VPAXYBAHHAM KApKAcy 3i cmpuHeepie i wnaneoymis. [[is po3paxyHKy yuriHOPUUHUX 0O0JOHOK, NIOKPINIEHUX
CMpuUHeepamu i WNaH2o0ymamu, 3acmoco8yEmbCa Memoo CKIHUeHHUX eleMeHmi8. 3acmocy8ants Memoody CKiH-
YEHHUX eleMeHmi6 0ac MONCIUBICMb PO3PAXYBAMU HANPYIHCEHO-0epOPMOBAHULI CINAH MEXAHIYUHOI cucmemu
3 VPAXYBAHHAM YCIX KOHCIMPYKIMUSHUX O0COOIUBOCMEU, 3 NOGHUM YPAXYBAHHAM ZPAHUYHUX VMO8 I 3A0aAHUX
Hasanmasjcensb. Ak npukiao noxKazama anpokcumayis mempaeopuiHozo CKiHueHHo2o enemeHma. Bukopuc-
MAHHSL MEMOOY CKIHUEHHUX eleMeHmi6 Npu SUPIUEHH] 3a0ay MIYHOCMI NIOKPINIEHUX 000IOHOK NPU3E00Umb
00 3HAYHO20 3POCMAHHA KIIbKOCMI CKIHUeHHUX elemenmis. Lle npuzeooums 00 3aHadmo 8UCOKUX 8UMO2 OO
00YUCTIOBATLHOT MEXHIKU, 3 MOUKU 30pY 00csi2y nam ' ami ma weuoxooii. Takum yunom, 00YinbHo po3poonsmu
EeKOHOMIYHT Ma eheKmueHi MEMOOUKU PO3PAXYHKY HANPYHCEHO-0ehopMOBAHO20 CIMAHY CKAAOHUX MEXAHIUHUX
cucmem, y AKUX NOEOHYIOMbCA AHANIMUYHI MA YUCETbHI MemooU, Ki 00N0GHIOIOMb 00UH 00HO20 Md 0alomb
MOACTUBICIND OYIHIOBAMU MIYHICIb KOHCMPYKYIU 3 MIHIMATbHUMU 8UMPAMAMU.

Knwouosei cnosa: nanpysiceno-oegpopmosarnuii cmaw, 00OIOHKA, CMpUHeepu, WNAH2Oymu, Memoo CKiHYeH-
HUX e/leMeHmIE.



